Global Health Vision

Global Health News and Reports

Huntington’s disease study shows animal models on target

This release is available in French.

An international team of researchers has published a benchmark study showing that gene expression in several animal models of Huntington’s Disease (HD) closely resembles that of human HD patients.

The results, published August 1, 2007, in the , validate the applicability of using animal models to study human disease and will have important consequences for the pertinence of these models in preclinical drug testing.

Huntington’s disease is an incurable and fatal hereditary neurodegenerative disorder caused by a mutation in the gene that encodes the huntingtin protein. Neurons in certain regions of the brain succumb to the effects of the altered protein, leading to severe motor, psychiatric, and cognitive decline. Several recent studies have shown that the mutant huntingtin protein modifies the transcriptional activity of genes in affected neurons. This disease mechanism is a promising new avenue for research into the causes of neuronal death and a novel potential approach for treatment.

Led by EPFL professor Ruth Luthi-Carter, and involving collaborators from six countries, the current study found a marked resemblance between the molecular etiology of neurons in animal models and neurons in patients with HD. This implies that animal models are relevant for studying human HD and testing potential treatments.

To come to this conclusion, the scientists measured the gene expression profile of seven different transgenic mouse models of HD, representing different conditions and disease stages. These profiles clarified the role of different forms and dosages of the protein hungtintin in the transcriptional activity of neurons. They then designed and implemented novel computational methods for quantifying similarities between RNA profiles that would allow for comparisons between the gene expression in mice and in human patients. “Interestingly, results of different testing strategies converged to show that several available models accurately recapitulate the molecular changes observed in human HD,” explains Luthi-Carter. “It underlines the suitability of these animal models for preclinical testing of drugs that affect gene transcription in Huntington’s Disease.”

###
More Information:

EPFL Laboratory of functional neurogenomics, http://lngf.epfl.ch/

Alexandre Kuhn ; +41 21 693 1731
alexandre.kuhn@epfl.ch

Professor Ruth Luthi-Carter; +41 21 693 9533
ruth.luthi-carter@epfl.ch

Contact: Alexandre Kuhn
alexandre.kuhn@epfl.ch
41-216-931-731
Ecole Polytechnique Fédérale de Lausanne

Global Health Vision

FMS Global News

Source

Advertisements

July 31, 2007 - Posted by | Alberta, Baltimore, Barcelona, Bethesda, Calgary, Canada, DNA, France, Genes, Genetic, Genetic Link, Genetics, Genome, Genomic, Germany, Global, Global Health Vision, Global News, Health Canada, Human Genome, Huntington's disease, Italy, Japan, Neurodegenerative Diseases, Newfoundland, News, News Australia, News Canada, News Israel, News Italy, News Jerusalem, News Switzerland, News UK, News US, News USA, Nova Scotia, Nunavut, Ottawa, Prince Edward Island, Proteins, Quebec, Research, RSS, RSS Feed, Spain, Toronto, UK, US, Virginia, Washington DC, Washington DC City Feed, World News

No comments yet.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: